Perancangan Aplikasi Klasifikasi Sampah Organik dan Anorganik Berbasis Mobile Dengan Metode Rapid Application Development (RAD)
Keywords:
Mobile Application, Waste Classification, Organic and Inorganic, Rapid Application Development(RAD), Computer Vision.Abstract
The problem of waste accumulation and low public awareness regarding waste sorting at the household level remains a crucial environmental issue. The inability to correctly distinguish between organic and inorganic waste often hinders the recycling process and further waste management. This study aims to design and build a mobile-based application that assists users in classifying waste types automatically and in real-time using mobile phone cameras. The system development method applied is Rapid Application Development (RAD). This method was chosen due to its emphasis on short development cycles and active user involvement through the prototyping process. The research phases include Requirement Planning, User Design, Construction, and Cutover. The application is designed by integrating digital image processing technology (Computer Vision) to recognize waste objects. The result of this research is a responsive and user-friendly waste classification application capable of detecting and providing information on waste types with adequate accuracy. This application is expected to serve as an interactive educational medium and a practical tool for the community to support waste sorting initiatives from the source.
Keywords: Mobile Application, Waste Classification, Organic and Inorganic, Rapid Application Development(RAD), Computer Vision.
Abstrak
Permasalahan akumulasi sampah dan rendahnya kesadaran masyarakat dalam memilah sampah di tingkat rumah tangga masih menjadi isu lingkungan yang krusial. Ketidakmampuan membedakan antara sampah organik dan anorganik secara tepat seringkali menghambat proses daur ulang dan pengelolaan limbah lebih lanjut. Penelitian ini bertujuan untuk merancang bangun sebuah aplikasi berbasis mobile yang dapat membantu pengguna mengklasifikasikan jenis sampah secara otomatis dan real-time memanfaatkan kamera ponsel. Metode pengembangan sistem yang diterapkan adalah Rapid Application Development (RAD). Metode ini dipilih karena karakteristiknya yang menekankan pada siklus pengembangan yang singkat dan keterlibatan pengguna secara aktif melalui proses prototyping. Tahapan penelitian mencakup Requirement Planning, User Design, Construction, dan Cutover. Aplikasi ini dirancang dengan mengintegrasikan teknologi pengolahan citra digital (Computer Vision) untuk mengenali objek sampah. Hasil dari penelitian ini adalah terciptanya aplikasi klasifikasi sampah yang responsif dan user-friendly, yang mampu mendeteksi dan memberikan informasi jenis sampah dengan akurasi yang memadai. Aplikasi ini diharapkan dapat menjadi media edukasi interaktif serta alat bantu praktis bagi masyarakat untuk mendukung gerakan pemilahan sampah sejak dari sumbernya.
Kata Kunci: Aplikasi Mobile, Klasifikasi Sampah, Organik dan Anorganik, Rapid Application Development (RAD), Computer Vision.
Downloads
References
Republik Indonesia. (2008). Undang-Undang Republik Indonesia Nomor 18 Tahun 2008 tentang Pengelolaan Sampah. Lembaran Negara Republik Indonesia Tahun 2008 Nomor 69. Jakarta: Sekretariat Negara.
Martin, J. (1991). Rapid application development. New York, NY: Macmillan Publishing Company.
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4), 541–551. https://doi.org/10.1162/neco.1989.1.4.541
David, R., Duke, J., Jain, A., Janapa Reddi, V., Jeffries, N., Li, J., … Warden, P. (2021). TensorFlow Lite Micro: Embedded machine learning on TinyML systems. Proceedings of Machine Learning and Systems, 3, 800–811.
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., … Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org
Sekar, S. (2019). Waste classification data [Data set]. Kaggle. https://www.kaggle.com/datasets/techsash/waste-classification-data
Google. (2017). Flutter: Build apps for any screen. https://flutter.dev
JetBrains. (2011). Kotlin programming language. https://kotlinlang.org
Nnamoko, N., Barrowclough, J., & Procter, J. (2022). Solid waste image classification using deep convolutional neural network. Infrastructures, 7(4), 47. https://doi.org/10.3390/infrastructures7040047
Kementerian Lingkungan Hidup dan Kehutanan. (2023). Capaian kinerja pengelolaan sampah. Sistem Informasi Pengelolaan Sampah Nasional (SIPSN). https://sipsn.menlhk.go.id/sipsn/
Santoso, A. D., & Nurhatika, S. (2020). Dampak lingkungan tempat pembuangan akhir (TPA) sampah open dumping terhadap kualitas air tanah. Jurnal Teknik Lingkungan, 25(1), 12–20.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4510–4520).
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., … Adam, H. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv. https://arxiv.org/abs/1704.04861
Powers, D. M. W. (2011). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. Journal of Machine Learning Technologies, 2(1), 37–63.
Downloads
-
PDF FULL TEXT
Abstract Dilihat : 63 Kali , Download: 44 Kali
Published
Issue
Section
License
Copyright (c) 2026 Muhammad Faizal Triasa, Amir Fathurrahman, Naufal Faadhilah Anas, Samso Supriyatna (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.

