Perancangan Data Warehouse (Studi kasus: Analisis Tren Penyakit Menular)

Authors

  • Chintia Cantika Universitas Katolik Musi Charitas, Palembang , Sumatera Selatan, Indonesia Author
  • Riski Surya Saputra Universitas Katolik Musi Charitas, Palembang , Sumatera Selatan, Indonesia Author
  • Andri Wijaya Universitas Katolik Musi Charitas, Palembang , Sumatera Selatan, Indonesia Author

Keywords:

Data Warehouse, Infectious Diseases, ETL, Fact Constellation Schema, Business Intelligence, Data Visualization

Abstract

Infectious diseases such as COVID-19, Tuberculosis, and Malaria remain significant global health challenges. A major obstacle in mitigating these outbreaks is the fragmentation of healthcare data, which leads to delays in analysis and decision-making. This study aims to design a Data Warehouse capable of integrating surveillance data from various heterogeneous sources to support real-time disease trend analysis. The methodology employed is a bottom-up approach utilizing a three-tier architecture. The data integration process is executed through an Extract, Transform, and Load (ETL) mechanism using Pentaho Data Integration to ensure data quality and consistency. Data storage implements a Fact Constellation Schema within a PostgreSQL database, enabling simultaneous multidimensional analysis of infection cases and mortality rates. The result of this research is a prototype of an interactive dashboard based on Tableau, which presents visualizations of geographic distribution (GIS) and temporal trend graphs. This implementation demonstrates that the centralization of healthcare data can facilitate more effective outbreak monitoring and support evidence-based public health policymaking.

Keywords: Data Warehouse, Infectious Diseases, ETL, Fact Constellation Schema, Business Intelligence, Data Visualization.

Abstrak

Penyakit menular seperti COVID-19, Tuberkulosis, dan Malaria masih menjadi tantangan kesehatan global yang signifikan. Salah satu hambatan utama dalam mitigasi wabah ini adalah fragmentasi data kesehatan yang menyebabkan keterlambatan dalam analisis dan pengambilan keputusan. Penelitian ini bertujuan untuk merancang sebuah Data Warehouse yang mampu mengintegrasikan data surveilans dari berbagai sumber heterogen untuk mendukung analisis tren penyakit secara real-time. Metodologi yang digunakan adalah pendekatan bottom-up dengan arsitektur tiga lapisan (three-tier architecture). Proses integrasi data dilakukan melalui mekanisme Extract, Transform, and Load (ETL) menggunakan Pentaho Data Integration untuk menjamin kualitas dan konsistensi data. Penyimpanan data menerapkan Fact Constellation Schema (Skema Galaksi) pada basis data PostgreSQL, yang memungkinkan analisis multidimensi terhadap kasus infeksi dan mortalitas secara bersamaan. Hasil penelitian ini berupa purwarupa dashboard interaktif berbasis Tableau yang menyajikan visualisasi sebaran geografis (GIS) dan grafik tren temporal. Implementasi ini membuktikan bahwa sentralisasi data kesehatan dapat memfasilitasi pemantauan wabah yang lebih efektif dan mendukung perumusan kebijakan kesehatan masyarakat yang berbasis bukti (evidence-based policy).

Kata Kunci: Data Warehouse, Penyakit Menular, ETL, Fact Constellation Schema, Business Intelligence, Visualisasi Data.

Downloads

Download data is not yet available.

References

Bansal, S., Chowell, G., Simonsen, L., Vespignani, A., & Viboud, C. (2016). Big Data for Infectious Disease Surveillance and Modeling. The Journal of Infectious Diseases, 214(suppl 4), S375–S379. https://doi.org/10.1093/infdis/jiw400

Chen, W., Xie, F., Mccarthy, D. P., Reynolds, K. L., Lee, M., Coleman, K. J., Getahun, D., Koebnick, C., & Jacobsen, S. J. (2023). Research data warehouse: using electronic health records to conduct population-based observational studies. JAMIA Open, 6(2), ooad039. https://doi.org/10.1093/jamiaopen/ooad039

Doutreligne, M., Degremont, A., Jachiet, P. A., Lamer, A., & Tannier, X. (2023). Good practices for clinical data warehouse implementation: A case study in France. PLOS Digital Health, 2(7), e0000298. https://doi.org/10.1371/journal.pdig.0000298

Evans, R. S., Lloyd, J. F., & Pierce, L. A. (2012). Clinical Use of an Enterprise Data Warehouse. AMIA Annual Symposium Proceedings, 2012, 189–198.

Knezevic Ivanovski, T., Honap, S., Matic, R., Markovic, S., & Peyrin-Biroulet, L. (2025). Building a healthcare data warehouse: considerations, opportunities, and challenges. Frontiers in Digital Health, 7, 1691142. https://doi.org/10.3389/fdgth.2025.1691142

Lyu, S., Craig, S., O'Reilly, G., & Taniar, D. (2025). The development and use of data warehousing in clinical settings a scoping review. Frontiers in Digital Health, 7, 1599514. https://doi.org/10.3389/fdgth.2025.1599514

Nuha, N., Pitchay, S. A., Halim, A. H. A., Sahbudin, M. A. B., & Sahbudin, I. (2025). Beyond the outbreak: a review of big data analytics in proactive infectious disease prevention for risk mitigation for COVID-19. Journal of Big Data, 12, 185. https://doi.org/10.1186/s40537-025-01245-z

Ozaydin, B., Zengul, F., Oner, N., & Feldman, S. S. (2020). Healthcare Research and Analytics Data Infrastructure Solution: A Data Warehouse for Health Services Research. Journal of Medical Internet Research, 22(6), e18579. https://doi.org/10.2196/18579

Shau, W. Y., Santoso, H., Jip, V., & Setia, S. (2024). Integrated Real-World Data Warehouses Across 7 Evolving Asian Health Care Systems: Scoping Review. Journal of Medical Internet Research, 26, e56686. https://doi.org/10.2196/56686

Soumma, S. B., Shahriar, F., Mahi, U. N., Abrar, M. H., Fahad, M. A. R., & Hoque, A. S. M. L. (2025). Design and Implementation of a Scalable Clinical Data Warehouse for Resource-Constrained Healthcare Systems. arXiv preprint arXiv:2502.16674.

Thantilage, R. D., Le-Khac, N. A., & Kechadi, M. T. (2023). Healthcare data security and privacy in Data Warehouse architectures. Informatics in Medicine Unlocked, 39, 101270. https://doi.org/10.1016/j.imu.2023.101270

Turcan, G., & Peker, S. (2022). A multidimensional data warehouse design to combat the health pandemics. Journal of Data, Information and Management, 4, 371–386. https://doi.org/10.1007/s42488-022-00082-6

Wang, Z., Syed, M., Syed, S., Greer, M., Seker, E., Zozus, M. N., & Craven, C. K. (2024). Clinical Data Warehousing: A Scoping Review. Journal of the Society for Clinical Data Management, 4(1), 8. https://doi.org/10.47912/jscdm.320

Wisniewski, M. F., Kieszkowski, P., Zagorski, B. M., Trick, W. E., Sommers, M., & Weinstein, R. A. (2003). Development of a Clinical Data Warehouse for Hospital Infection Control. Journal of the American Medical Informatics Association, 10(5), 454–462. https://doi.org/10.1197/jamia.M1292

Downloads

Published

2026-01-03